Skip to main content

The sum of ages of 5 children born at the intervals of 3 years each is 50 years.


The sum of ages of 5 children born at the intervals of 3 years each is 50 years. What is the age of the youngest child?
A.4 yearsB.8 years
C.10 yearsD.None of these


Answer: Option A
Explanation:
Let the ages of children be x, (x + 3), (x + 6), (x + 9) and (x + 12) years.
Then, x + (x + 3) + (x + 6) + (x + 9) + (x + 12) = 50
 5x = 20
 x = 4.
 Age of the youngest child = x = 4 years.

Comments

Popular posts from this blog

It takes 10 days for digging a trench of 100 m long, 50 m broad and 10 m deep. What length of trench, 25 m broad and 15 m deep can be dug in 30 days ?

 It takes 10 days for digging a trench of 100 m long, 50 m broad and 10 m deep.  What length of trench, 25 m broad and 15 m deep can be dug in 30 days ?       a) 400 m          b) 200 m          c) 100 m          d) 89m Expl : More days, more length (Direct)       Less breadth, more length (Indirect)       More depth, less length (Indirect       Days      10 : 30;       Breadth  25 : 50;                  : : 100 : x       Depth    15 : 10;                     :. 10 * 25* 15 * x = 30 *50 * 10 *100             x= (30*50*10*100)/10*25*15 = 400      So the required length = 400m

Find the number of perfect squares in the given series 2013, 2020, 2027,.

Find the number of perfect squares in the given series 2013, 2020, 2027,................, 2300   (Hint 44^2=1936) a. 1   b. 2    c. 3   d. Can’t be determined Answer: a Explanation: The given series is an AP with common difference of 7. So the terms in the above series are in the form of 2013 + 7k.  We have to find the perfect squares in this format in the given series. Given that 44^2 = 1936. Shortcut: To find the next perfect square, add 45th odd number to 44^2. So 45^2 = 1936 + (2 x 45 -1) = 2025 46^2 = 2025 + (2 x 46 - 1) = 2116 47^2 = 2116 + (2 x 47 - 1) = 2209 Now subtract 2013 from the above numbers and divide by 7. Only 2209 is in the format of 2013 + 7k.  One number satisfies.