Skip to main content

What is in the 200th position of 1234 12344 123444 1234444....?

What is in the 200th position of 1234 12344 123444 1234444....?








Answer: 4











Explanation:
The given series is 1234, 12344, 123444, 1234444, .....
So the number of digits in each term are 4, 5, 6, ... or (3 + 1), (3 + 2), (3 + 3), .....upto n terms = 3n+n(n+1)2
So 3n+n(n+1)2200
For n = 16, We get 184 in the left hand side. So after 16 terms the number of digits equal to 184.  And 16 them contains 16 + 3 = 19 digits.
Now 17 term contains 20 digits and 123444......417times.  So last digit is 4 and last two digits are 44.

Comments

Popular posts from this blog

It takes 10 days for digging a trench of 100 m long, 50 m broad and 10 m deep. What length of trench, 25 m broad and 15 m deep can be dug in 30 days ?

 It takes 10 days for digging a trench of 100 m long, 50 m broad and 10 m deep.  What length of trench, 25 m broad and 15 m deep can be dug in 30 days ?       a) 400 m          b) 200 m          c) 100 m          d) 89m Expl : More days, more length (Direct)       Less breadth, more length (Indirect)       More depth, less length (Indirect       Days      10 : 30;       Breadth  25 : 50;                  : : 100 : x       Depth    15 : 10;                     :. 10 * 25* 15 * x = 30 *50 * 10 *100             x= (30*50*10*100)/10*25*15 = 400      So the required length = 400m